Fatal attraction in glycolysis: how Saccharomyces cerevisiae manages sudden transitions to high glucose

نویسندگان

  • Johan H. v. Heerden
  • Meike T. Wortel
  • Frank J. Bruggeman
  • Joseph J. Heijnen
  • Yves J. Bollen
  • Robert Planqué
  • Josephus Hulshof
  • Tom G. O’Toole
  • S. A. Wahl
  • Bas Teusink
چکیده

In the model eukaryote Saccharomyces cerevisiae, it has long been known that a functional trehalose pathway is indispensable for transitions to high glucose conditions. Upon addition of glucose, cells with a defect in trehalose 6-phosphate synthase (Tps1), the first committed step in the trehalose pathway, display what we have termed an imbalanced glycolytic state; in this state the flux through the upper part of glycolysis outpaces that through the lower part of glycolysis. As a consequence, the intermediate fructose 1,6-bisphosphate (FBP) accumulates at low concentrations of ATP and inorganic phosphate (Pi). Despite significant research efforts, a satisfactory understanding of the regulatory role that trehalose metabolism plays during such transitions has remained infamously unresolved. In a recent study, we demonstrate that the startup of glycolysis exhibits two dynamic fates: a proper, functional, steady state or the imbalanced state described above. Both states are stable, attracting states, and the probability distribution of initial states determines the fate of a yeast cell exposed to glucose. Trehalose metabolism steers the dynamics of glycolysis towards the proper functional state through its ATP hydrolysis activity; a mechanism that ensures that the demand and supply of ATP is balanced with Pi availability under dynamic conditions. [van Heerden et al. Science (2014), DOI: 10.1126/science.1245114.].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation of indigenous Glutathione producing Saccharomyces cerevisiae strains

Background: Glutathione (GSH) is a non-protein thiol compound, which plays an important role in the response to oxidative stress and nutritional stress. The aim of this study was to isolate indigenous S. cerevisiae strains capable of effectively produce GSH. Methods: One hundred-twenty sweet frui...

متن کامل

Xylitol formation and reduction equivalent generation during anaerobic xylose conversion with glucose as cosubstrate in recombinant Saccharomyces cerevisiae expressing the xyl1 gene.

Glucose was used as a cosubstrate under anaerobic conditions in the conversion of xylose to xylitol by a recombinant Saccharomyces cerevisiae strain expressing the xyl1 gene. Glucose was metabolized mainly through glycolysis, with carbon dioxide, acetate, and ethanol as end products and with reduction equivalents generated in the glyceraldehyde-3-phosphate dehydrogenase and acetaldehyde dehydro...

متن کامل

Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae.

The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and...

متن کامل

Saccharomyces cerevisiae SFP1: at the crossroads of central metabolism and ribosome biogenesis.

Saccharomyces cerevisiae SFP1 is required for nutrient-dependent regulation of ribosome biogenesis and cell size. A mutant deleted for SFP1 shows specific traits, including a slow growth phenotype, especially when growing on glucose. We recently analysed the physiology of an sfp1Delta mutant and its isogenic reference strain in chemostat cultures. This approach was successful in revealing the e...

متن کامل

Protein kinase Ymr291w/Tda1 is essential for glucose signaling in saccharomyces cerevisiae on the level of hexokinase isoenzyme ScHxk2 phosphorylation*.

The enzyme ScHxk2 of Saccharomyces cerevisiae is a dual-function hexokinase that besides its catalytic role in glycolysis is involved in the transcriptional regulation of glucose-repressible genes. Relief from glucose repression is accompanied by the phosphorylation of the nuclear fraction of ScHxk2 at serine 15 and the translocation of the phosphoenzyme into the cytosol. Different studies sugg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2014